• Content
  • Collaboration
  • About Us
  • Contact Us

SEARCH RESULTS FOR: Triptans

Serotonin Syndrome Pathogenesis and Clinical Findings

Serotonin Syndrome: Pathogenesis and Clinical Findings 
Serotonergic Agents SSR1s, SNRIs, MOAIs, TCAs, atypical antidepressants, antibiotics, mood stabilizers (valporate, lithium), opioids, antiemetic agents, triptans, weight loss agents, drugs of abuse (e.g. cocaine, amphetamines) 
Therapeutic drug use 
• Drug interactions (esp. combo of serotonergic agents) Serotonin Syndrome  Variable combination of mental status changes, autonomic instability, and neuromuscular hyperactivity ranging from mild to life-threatening with an abrupt onset (within minutes to hours) after medication ingestion and most cases resolving within 24 hours of cessation of offending medication 
Intentional self-poisoning 
Excessive serotonergic activity at 5-HT receptors centrally (brainstem) and peripherally 
serotonin synthesis and release 
serotonin reuptake and metabolism 
IN receptor agonism and sensitivity 
4, 
Drug-induced changes in the relative ratio of non-serotonergic neurotransmitters (e.g. increase in noradrenaline)  
Altered Mental Status 
Anxiety, confusion, agitation, hypervigilance, pressured speech, delirium, coma 
Autonomic Instability 
Shivering, diaphoresis, fever, diarrhea, tachycardia, mydriasis, hypertension 
Authors: Preeti Kar Reviewers: Erika Russell Usama Malik Aaron Mackie* * MD at time of publication 
Notes: The Hunter Serotonin Toxicity Criteria is used to make a clinical diagnosis • History of serotonergic agent taken within past 5 weeks + any of the following clinical features: • Spontaneous clonus • Inducible clonus and either agitation or diaphoresis • Ocular clonus and either agitation or diaphoresis • Tremor and hyperreflexia • Hypertonia, temperature > 38 °C, and either ocular clonus or inducible clonus 
Neuromuscular Hyperactivity 
Hyperreflexia, muscle rigidity (esp. lower extremities), myoclonus, tremor, incoordination, trismus*, opisthotonus*, ocular clonus*, seizures 
*Notes: • Trismus or lockjaw, is the reduced opening of the jaw • Opisthotonus is an abnormal body position where the person is usually rigid and arches their back, with their head thrown backwards • Ocular Clonus is rhythmic or equal movements of both eyes; should be distinguished from nystagmus which has a fast and slow component 
Legend: Pathophysiology Mechanism 
Sign/Symptom/Lab Finding 
Abbreviations: • 5-HT = serotonin • SSRI = selective serotonin reuptake inhibitors • SNRI = selective noradrenaline reuptake inhibitors • MOAI = monoamine oxidase inhibitors • TCA = tricyclic antidepressants

unstable-angina-pathogenesis-and-clinical-findings

Unstable Angina/Unstable Angina Pectoris: Pathogenesis and clinical findings Primary cause:
Secondary causes:
Coronary artery vasospasm - primary or drug induced (Ex: cocaine, triptans)
Coagulopathy
(Ex: antiphospholipid antibody syndrome)
Vasculitic syndromes (Ex: Takayasu arteritis)
Authors: Marisa Vigna Ryan Wilkie Yan Yu* Reviewers: Julena Foglia Davis Maclean Mehul Gupta Andrew Grant* * MD at time of publication
  Atherosclerosis
Fatty plaque accumulates inside the intimal walls of arteries Coronary arterial atherosclerotic plaque rupture or erosion
Plaque disruption exposes subendothelial components of damaged vessel wall to platelets, initiating the coagulation cascade and platelet adhesion
Aggregation of platelets results in the formation of a thrombus Thrombus partially occludes blood flow through a coronary artery âmyocardial blood supply
Congenital anomalies (Ex: myocardial bridge, anomalous coronary)
Spontaneous coronary artery dissection
Increased blood viscosity (Ex: polycythemia, thrombocytopenia)
Factors thatámyocardial (cardiac muscle) oxygen demand (Ex: tachycardia, hypotension, hypertension, anemia, exertion, stress)
Coronary embolism (Ex: A. Fib, endocarditis, prosthetic valve thrombus)
                   áheart rate, contractility, and/or wall tension ámyocardial oxygen demand
       Myocardial ischemia due to imbalance between blood supply and oxygen demand (insufficient blood/oxygen supply)
Unstable Angina/Unstable Angina Pectoris
Can be new onset angina; typically progressive in frequency, severity, or duration; can occur at rest
      Subtotal occlusion of a coronary arteryà
reduced, but continued, myocardial blood supply
Maintained perfusion means cardiomyocytes are still alive and thus do not leak troponin into bloodstream
Normal serum troponin
Diaphoresis
(sweating)
Since bloodflow occurs from epicardium to endocardium, myocardial ischemia is more
pronounced in the subendocardium (region furthest away from heart’s external surface)
Sufficient blood flow is maintained in regions superficial to the subendocardium, resulting in non-transmural (partial thickness) heart wall ischemia
Non-inferior wall ischemia triggers a predominantáin sympathetic nervous system activity, given the proximity of cardiac sympathetic nerve innervation
Ischemiaâ cardiomyocyte resting membrane potential andâ action potential duration
Voltage gradient between normal and subendocardial ischemic zones creates injury currents, shifting the ST- vector on ECG
ECG: ST depression
and/or T wave inversion
Cardiac sensory nerve fibres mix with somatic sensory nerve
fibres and enter the spinal cord via the T1-T4 nerve roots
Brain perceives increased cardiac sensory nerve signaling as nerve pain coming from the skin of T1-T4 dermatomes (“Referred Pain”)
Myocardial ischemia causes hypoxic stress on cardiomyocytesàâaerobic (requiring oxygen) metabolism,áanaerobic (not requiring oxygen) metabolism
áanerobic respirationálactic acid production,á[H+], andâcellular pH which impairs cardiomyocyte function
Cardiomyocyte dysfunction impairs myocardial relaxation in diastole and/orâ left ventricular contractility in systole
âleft ventricular cardiac output àbackup of blood in the left ventricle, atrium, and pulmonary vasculature
ápulmonary capillary pressures pushes fluid out of the capillaries into the alveoli in the lungs
Fluid filled alveoliâgas exchange andâ oxygenation, triggering harder and faster breathing in order to compensate
Dyspnea
                                 Activation of sweat glands via acetylcholine release
Hormones bind to cardiac β1 receptors
Tachycardia
(áheart rate)
Epinephrine/ Norepinephrine hormone release from the adrenal medulla
Hormones bind to arterial smooth muscle α1 receptors ávascular tone (vasoconstriction)
Hypertension
The Vagus nerve sits in close physical proximity to the inferior wall of the heart àinferior wall ischemia triggers involuntary Vagus nerve activation
Since the Vagus nerve coordinates parasympathetic activity,áVagus nerve activity leads to a variety of parasympathetic nervous system responses:
Retrosternal discomfort: May present as pain, heaviness, tightness, aching, pressure, burning or squeezing
Pain radiation to T1-T4 dermatomes:
Left shoulder and arm, lower jaw, neck, abdomen, upper back
           Syncope
(fainting)
Bradycardia
Nausea Hypotension
        (âheart rate)
(âblood pressure)
  (áblood pressure)
(shortness of breath)
 Legend:
 Pathophysiology
 Mechanism
 Sign/Symptom/Lab Findings
  Complications
Published Oct 18, 2015, updated Aug 29, 2021 on www.thecalgaryguide.com

Triptans

Triptans: Mechanism of action and side effects
Triptans
Selective competitive agonists of trigeminovascular serotonin (5-HT) receptors that cause constriction of
cranial blood vessels & inhibition of trigeminal pain signaling to abort migraines & cluster headaches
Activation of 5-HT₁B
receptors on peripheral &
visceral blood vessels
↑ Vascular tone
Deformation of vessel walls
Activation of
mechano-
sensitive
nerve endings
in coronary
vessels
Activation of
mechano-
sensitive
nerve endings
in peripheral
vessels
Transmission of
signals via T1-
T4 sympathetic
fibres
Continued use
of triptans ↓
activation
threshold
Central
interpretation of
signals as painful
↑ Abnormal
signaling to CNS
Chest tightness
Paresthesias
Legend: Activation of 5-HT₁B
receptors on
meningeal artery
smooth muscle
↑ Vasoconstriction
of dilated
meningeal vessels
↓ Mechanical
distension
↓ Activation
of meningeal
nociceptors
↓ Throbbing
sensation
Activation of 5-HT₁D
receptors on V1
segment of the
trigeminal nerve
↓ Calcitonin gene-
related peptide (CGRP)
& other vasoactive
neuropeptides
↓ Vasodilation
↓ Neurogenic
inflammation
↓ Plasma leakage
into tissues
↓ 1st order neuron
signaling to trigeminal
nucleus caudalis &
thalamus
5-HT₁B/₁D (±₁F) receptor
agonism directly on
trigeminal nucleus
caudalis & brainstem
↓ Glutamatergic
signaling
Transient changes in
central excitability
Suppression of
excessive excitably
in thalamus
↓ Integration
of retinal &
cochlear inputs
↓ Photophobia
& phonophobia
Authors:
Sarah Johns
Reviewers:
Trevor Low
Emily J. Doucette
Jean Mah*
* MD at time of publication
Suppression
of excitably in
dorsal raphe
nucleus
↓ Arousal
Fatigue &
drowsiness
Pathophysiology Mechanism
Pharmacologic Effect Side Effects
↓ 2nd order
neuron firing
↓ Input to
vestibular nuclei
↓ Neuronal
activity in
nucleus tractus
solitarus
↓ Nausea
Published Oct 19, 2025 on www.thecalgaryguide.com
↓ Integration
of balance &
spatial
orientation
Dizziness &
unsteadiness

© 2025 - The Calgary Guide to Understanding Disease

Disclaimer