SEARCH RESULTS FOR: Primary-Aldosteronism

Primary-Aldosteronism

 Primary Aldosteronism: Clinical findings
Note: This condition is also known as “Primary Hyper-Aldosteronism” or “Conn’s Syndrome”
Authors: Samin Dolatabadi Reviewers: Amanda Henderson, Hannah Yaphe, Yan Yu*, Hanan Bassyouni* Juliya Hemmett* * MD at time of publication
↑ Expression of Cl-/HCO3- exchanger in the basolateral membrane of intercalated cell of cortical collecting duct
↑ HCO3- reabsorption into bloodstream
 ↑ Autonomous aldosterone secretion from zona glomerulosa of adrenal cortex (e.g. aldosterone producing adenoma)
↑ Serum aldosterone level
↑ Circulating aldosterone activates mineralocorticoid receptors on cardiac myocytes
↑ Transcription of proinflammatory and profibrotic genes in cardiac myocytes
Cardiac fibrosis and hypertrophy
In the rest of the body, K+ moves from intracellular to extracellular environment (down it's concentration gradient) to compensate for decreased serum K+
Loss of positively charged K+ànegative intracellular chargeàcells take up H+ to remain electrostatically neutral
         ↑ Expression of epithelial sodium channels in
principal cells of cortical collecting duct
↑ Na+ reabsorption from cortical collecting duct into blood vessels
+ Water follows Na
into the blood vessels to balance the osmotic pressure between the blood and the renal tubules
↑ blood volume within the volume-
constrained space of blood vessels
↑ Activation of Na+/K+ ATPase in principle cells of cortical collecting duct
Removal of positively charged Na+ from tubular lumenà lumen becomes electronegative versus the interstitial space & inside tubular epithelial cells
Positively charged K+ follows the electrical gradient and is secreted into tubular lumen
↓ Serum K+ concentration
↑ Expression of H+ ATPase in the apical (luminal)
membrane of intercalated cell of cortical collecting duct
H+ is secreted into cortical collecting duct → renal loss of H+ from the body
                 Metabolic Alkalosis
(blood becomes more basic; ↑ serum pH)
                            Hypertension
Muscle weakness, fatigue, polyuria
↓ pH in intercalated cell
↓ pH in cells of proximal convoluted tubule
↑ loss of H+ through kidneys
H+ secretion into cortical collecting duct
↑ H+ ATPase activity in intercalated cell
Activation of glutaminase in proximal convoluted tubule
HCO3- pumped into blood
↑ production of HCO3- (product of glutamine breakdown)
↑ breakdown of glutamine
   Hypokalemia
         (See Hypokalemia: Clinical Findings slide)
 Legend:
 Pathophysiology
 Mechanism
Sign/Symptom/Lab Finding
  Complications
Published January 16, 2020 on www.thecalgaryguide.com

Primary Aldosteronism Pathogenesis

Primary Aldosteronism: Pathogenesis and clinical findings
     Unilateral aldosterone producing adenoma
Benign tumours of the adrenal glands develop ion channel mutations
↑ Na+ movement into adrenal gland cellsàcell depolarizationà↑ Ca+ entry into zona glomerulosa
Bilateral adrenal hyperplasia
Unknown mechanisms cause bilateral adrenal hyperplasia of the zona glomerulosa
↑ Ca+ leads to cellular replication and hyperplasia of the zona glomerulosaà ↑aldosterone release
Adrenocortical carcinoma
Abnormal and excessive growth of the zona glomerulosa (neoplasia)à↑ aldosterone
Overproduction of aldosterone, independent from renin-angiotensin- aldosterone system (RAAS)
Ectopic aldosterone secreting tumor
adrenocortical tissue outside of the adrenal glands produce aldosterone
Familial hyperaldosteronism (FH) Type I
Rare mutation causing ACTH- sensitive aldosterone production in the zona fasciculata
               Aldosterone binds its receptor on the principal cells located in the collecting duct of the kidney
↑ Na+ and K+ channel insertion on luminal surface of the principal cell and ↑ Na/K ATPase activity on basolateral surface
Na+ follows the concentration gradient and moves into the principal cell cytoplasmàK+ moves into the collecting duct to maintain electroneutrality
Aldosterone binds its receptor on the alpha intercalated cells located in the late distal tubule and collecting duct of the kidney
↑ H+ ATPase and Na/H+ ATPase activity on the luminal surface of alpha intercalated cellsà↑ H+ excretion
H+ loss permits HCO3- to move down the electrochemical gradient across the luminal surfaceà↑ HCO3- resorption into peritubular capillaries
Metabolic alkalosis
K+ efflux (or hypokalemia of any etiology) is counterbalanced by influx of H+ into tubular cells to maintain electroneutrality
↓ pH in tubular cells activates glutaminase (a pH dependent enzyme) generating glutamate from glutamine
Glutamate within renal tubules dissociates into NH4+, HCO3- Intracellular acidosis within tubular cells
Disrupted cellular signaling within the collecting duct results in reduced APQ2 translocation to luminal surface
Authors: Kyle Moxham Reviewers: Emily Wildman Austin Laing Yan Yu* Matthew Harding* * MD at time of publication
                    Hypertension
↑ Na+ reabsorption
H2O follows active reabsorption
of solute into circulationà ↑ effective arterial blood volume (EABV)
Chronic EABV expansion resets hypothalamic osmotic sensitive ADH releaseàdecreased ADH production
↑ K+ excretion
Hypokalemia (see our Hypokalemia: Clinical Findings Slide)
↓ Na+ delivery to macula densa in the distal convoluted tubule
↓Endogenous renin secretion by juxtaglomerular apparatus while aldosterone continues to be independently produced
    Polydipsia & Polyuria
    Mild hypernatremia
↓ Renin: Aldosterone ratio
Nephrogenic diabetes insipidus: ↓ urinary concentrating ability
 Legend:
 Pathophysiology
Mechanism
Sign/Symptom/Lab Finding
 Complications
Published December 4, 2021 on www.thecalgaryguide.com